

| $\frac{N65}{15380}$          |            |
|------------------------------|------------|
| (ACCESSION NUMBER)           | (THRU)     |
| 18                           |            |
| (PAGES)                      | (CODE)     |
| D. 60317                     | 1.5        |
| NASA CR OR TMX OR AD NUMBER) | (CATEGORY) |

GPO PRICE \$ \_\_\_\_\_

Microfiche (MF) \_\_\_\_\_\_\_\_

Quarterly Progress Report No. 2

ACCELERATION FACTOR DETERMINATION

FOR METAL FILM RESISTORS

Prepared under Contract No. NAS8-11076

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

# ELECTRA MANUFACTURING COMPANY

INDEPENDENCE, KANSAS

Phone: 316-331-3400

TWX: 316-331-0210

Quarterly Progress Report No. 2 March 15, 1964-June 15, 1964

ACCELERATION FACTOR DETERMINATION
FOR METAL FILM RESISTORS

Prepared under Contract No. NASS-11076 by ELECTRA MANUFACTURING COMPANY Independence, Kanaas

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Huntsville, Alabama

#### ABSTRACT

15380

This report covers the work performed during the second quarter of the contract period of performance.

Analysis of variance of the Phase I Screen Test data and the Phase I Temperature-Power Stress Tests was undertaken employing the method of "significant differences".

Upon completion of the Phase III Screen Tests the matrix conditions for the Phase III Life Test were determined and the Phase III Life Test was initiated.

Forty (40) resistors were damaged by an accidental overload and were replaced from the standby units.

## TABLE OF CONTENTS

| 1.0   | INTRO | DDUCTION                                                      | Page | 1        |
|-------|-------|---------------------------------------------------------------|------|----------|
| 2.0   | FACTU | JAL DATA                                                      | Page | 2        |
|       | 2.1   | Effects of Screen Testing on Life Test Results                |      | 2        |
|       | 2.2   | Comparison of All Phase I Tests for Each Type                 |      | 2        |
|       | 2.3   | Comparison of Each Screen Test                                |      |          |
|       | 2.4   | with Life Test for Each Manufacturing Type<br>Phase III Tests |      | 10<br>10 |
| 3.0   | ANALY | rsis                                                          | Page | 12       |
|       |       | Effects of Screen Tests                                       |      | 12       |
|       | 3.2   | Correlation of the Various Screen Tests with Life Test        |      | 12       |
|       | 3.3   | Recommendations                                               |      | 14       |
|       |       |                                                               |      |          |
|       |       | LIST OF TABLES                                                |      |          |
| Table | e I   | Stress Conditions                                             | Page | 3        |
| Table | e II  | Data Comparisons                                              |      | 4        |
| Table | e III | Data Comparisons                                              |      | 5        |
| Table | e IV  | Data Comparisons                                              |      | 6        |
| Table | e V   | Data Comparisons                                              |      | 7        |
| Table | e VI  | Data Summary                                                  |      | 8        |
| Table | e VII | Data Summary                                                  |      | 9        |
| Tabl  | e VII | I Matrix Conditions                                           |      | 10       |
| Table | e IX  | Part Serial Numbers                                           |      | 11       |
| Table | 2 Y   | Effects of Screen Tests                                       |      | 13       |

#### 1.0 INTRODUCTION

The purpose of this contract is to develop and conduct a matrix test for metal film resistors employing temperature, power dissipation, and vibration as the stress. The test results will be evaluated and valid acceleration factors established for the different combinations and levels of stress.

An acceleration factor for metal film resistors is to be established by employing various stress matrix tests and a mathematical formula based on the Weibull Distribution. Upon completion of the initial tests, a matrix of useful individual stresses or combinations thereof will be determined and longer term tests will be completed through the range from low to high stress conditions to generate the necessary plots for a verified acceleration factor.

All failures are to be analyzed to determine the modes of failure.

The condition and cause is to be determined for each mode of
failure, and from the distribution of failures versus stress levels
it will be established whether each mode is a function of design,
process, or materials. Appropriate stress screening techniques
capable of detecting the known modes of failure are to be established.

The Second Quarterly Report continues with the analysis of data from the Phase I Matrix and the testing of components in the Phase III Matrix.

#### 2.0 FACTUAL DATA

## 2.1 Effects of Screen Testing on Life Test Results

A comparison of data was made to test for significant differences between screened and unscreened units during the various stress conditions of the 1000-hr. Life Test. Data for Mamufacturing Types A, B & C were used collectively for this first comparison. Results are shown in Table I for both 100 chm and 39.2K chm units. Table values for F were taken from Table A-7a.F Distribution, upper 5% points (F.95) degrees of freedom for numerator, Page 388 of "Introduction to Statistical Analysis", Dixon & Massey, McGraw-Hill, 1957. Significant differences are seen between results of the screened and unscreened groups in thirteen of the thirty-two cases and in three cases the severity of the test conditions made tho data uncomparable. The most promising results as far as indicating differences between screened and unscreened units appear in the 25°C, 70°C and 125°C temperature groups which were loaded from 1 X rated power to 5 X rated power. The 150°C and 10 X rated power groups showed little or no significant difference between the screened and unscreened groups. Probably the differences indicated in the lower stress conditions were masked by the increased severity of the higher stress conditions.

## 2.2 Comparison of All Phase I Tests for Each Type

Variance of data was compared for each Manufacturing Type (I.e., A, B and C) for all tests performed in Phase I. Overstress

Load (S.T.O.L.) was eliminated in this comparison since the

x 5

X 10

X 2½

X 1

Rated Power

| 25°C:<br>Screened Variance<br>Unscreened Variance<br>F - Ratio<br>Table Value F.95 (30,  | .0001<br>.0005<br>5.000<br>30) = 1.84     | .00083<br>.00058<br>1.431<br>(30, 30) = 1.84   | .0025<br>.0008<br>3.125<br>(40, 40) = 1.69 | .0235<br>.0073<br>3.219<br>(20, 20) = 2.12    |
|------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------------------|-----------------------------------------------|
| 70°C:<br>Screened Variance<br>Unscreened Variance<br>F - Ratio<br>Table Value F.95 (60,  |                                           |                                                |                                            |                                               |
| 125°C:<br>Screened Variance<br>Unscreened Variance<br>F - Ratio<br>Table Value F.95 (40, |                                           |                                                |                                            |                                               |
| 150°C:<br>Screened Variance<br>Unscreened Variance<br>F - Ratio<br>Table Value F.95 (60, |                                           |                                                |                                            | 2668.48<br>2084.84<br>1.279<br>2.40           |
|                                                                                          |                                           | 39 <b>.</b> 2K                                 |                                            |                                               |
| Rated Power                                                                              | X 1                                       | X 2½                                           | x 5                                        | X 10                                          |
| 25°C:<br>Screened Variance<br>Unscreened Variance<br>F - Ratio<br>Table Value F.95 (30,  | .000406<br>.000231<br>1.758<br>30) = 1.84 | .001631<br>.004924<br>3.019<br>(30, 30) = 1.84 | .37506<br>.03848<br>9.748                  | .00327<br>.00658<br>2.012<br>(10, 10) = 2.98  |
| 70°C:<br>Screened Variance<br>Unscreened Variance<br>F - Ratio<br>Table Value F.95 (40,  | .000634<br>2.961                          | .0006<br>25.15                                 |                                            | N = 15<br>9 Unstable<br>6 Greater than 20, 15 |
| 125°C:<br>Screened Variance<br>Unscreened Variance<br>F - Ratio<br>Table Value F.95 (40, | .00117<br>.00537<br>4.59                  | .08374<br>.10245<br>1.223                      | 3.9584<br>2.799 <b>5</b>                   | N = 15<br>7 Unstable<br>9 Unstable            |
| 150°C:<br>Screened Variance                                                              | .0256L                                    |                                                | 11.80351                                   | N = 15<br>9 Unstable<br>10 Unstable           |

|               |                  | <u>A</u>             | В                              | C                    |
|---------------|------------------|----------------------|--------------------------------|----------------------|
| Temp. Cycle   | <b>x</b> x ≈ 2 ≈ | 2.30<br>.1307        | 1.49<br>.0641                  | .85<br>.022 <b>3</b> |
| Burn-In       | ZX2 =            | • <b>53</b><br>•0109 | <b>-1.3</b> 8<br><b>.</b> 2276 | 56<br>.0250          |
| Initial Noise | <b>Z</b> X =     | 100.8<br>4939.66     | 214.20<br>1256.22              | 65.3<br>105.71       |
| Load Life     | <b>XX</b> 2 =    | -2.00<br>.1181       | 9.8h<br>14.269                 | 2.88<br>.1768        |
| F - Ratio     |                  | 2.048                | <b>98.3</b> 8                  | 143.81               |
| Table Value:  | F.95 = 2.        | 60<br>               |                                |                      |

# 39.2K, 1 X RATED

|               | عود فوضع فاستاد                                         | A                  | В              | С                  |
|---------------|---------------------------------------------------------|--------------------|----------------|--------------------|
| Temp. Cycle   | <b>₹</b> X2 = 2 X = 3 X = 3 X = 3 X X = 3 X X X X X X X | •96<br>•1898       | 3.85<br>.2818  | 1.16               |
| Burn-In       | ZX <sup>2</sup> m                                       | 86<br>.2149        | -4.07<br>•5921 | -1.66<br>.1133     |
| Initial Noise | XX <sup>2</sup> =                                       | 2216.2<br>11810.76 | 15.0<br>23.56  | 4902.7<br>11121.78 |
| Load Life     | ex.                                                     | .03<br>.04114      | 1.28<br>1.2886 | 1.86<br>1.5058     |
| F - Ratio     |                                                         | 551.2              | 12:043         | 55.40              |
| Table Value:  | F <sub>.95</sub> (3,                                    | 60) = 2.76         |                |                    |

100 oim,  $2\frac{1}{2}$  X RATED

|               |                                        | A               | В                | C                      |
|---------------|----------------------------------------|-----------------|------------------|------------------------|
| Temp. Cycle   | <b>x</b> x <sup>2</sup> =              | 1.48<br>.0808   | .80<br>.0395     | .55<br>.0112           |
| Burn-In       | <b>Z</b> X = <b>Z</b> X <sup>2</sup> = | .15<br>.0026    | 259<br>.2309     | 41<br>.0075            |
| Initial Noise | <b>x</b> x² =                          | 58.90<br>634.36 | 153.0<br>1301.96 | 47.0<br>7 <b>3.5</b> 8 |
| Load Life     | <b>₹</b> X = <b>x</b> X2 = <b>x</b>    | 3.07<br>.6055   | 19.23<br>156.54  | 4.15<br>.8763          |
| F - Ratio     |                                        | 6.29            | 20.186           | 108.42                 |
| Table Value:  | F <sub>.95</sub> (2, 1                 | ;0) = 2.8l;     |                  |                        |

39.2K, 2½ X RATED

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Α       | В       | С       |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|--|--|--|
| Temp. Cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 1.10  | 2.45    | •35     |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0501   | 1.2415  | •0265   |  |  |  |
| Burn-In $= X X = X^2 = $ | -1.02   | -1.67   | -1.5h   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .1098   | 1.4925  | .0670   |  |  |  |
| Initial Noise $= X_2 = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 236.8   | 236.8   | 463.6   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4027.52 | 4027.52 | 6935.12 |  |  |  |
| Load Life X = XX <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -1.03   | 16.08   | 4.85    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5790.35 | 3155.2  | 760.25  |  |  |  |
| F - Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .5759   | 9.059   | 89.73   |  |  |  |
| Table Value: F.95 (3, 40) = 2.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |         |         |  |  |  |

100 OH, 5 X RATED

| •                                |                           | A                      | B                   | . C                  |  |
|----------------------------------|---------------------------|------------------------|---------------------|----------------------|--|
| Temp. Cycle                      | <b>x</b> x <sup>2</sup> = | · 1.38<br>.0622        | •59<br>•0285        | •72<br>•0248         |  |
| Burn-In                          | <b>x</b> x = =            | •005Jt<br>•0Jt         | -1.52<br>.0845      | 30<br>.0116          |  |
| Initial Noise                    | <b>X</b> X2 =             | 24.4<br>31.98          | 113.4<br>504.28     | <b>39.9</b><br>63.31 |  |
| Load Life                        | <b>Z</b> X <sup>2</sup> = | 13<br>.1619            | 176.46<br>4298.4766 | 1.70<br>1.2128       |  |
| F - Ratio                        |                           | <b>3</b> 6 <b>.</b> 99 | 8.449               | 78 <b>.7</b> 9       |  |
| Table Value: F.95 (3, 40) = 2.84 |                           |                        |                     |                      |  |

## 39.2K, 5 X RATED

|               |                                                 | A                        | R                 | C                     |
|---------------|-------------------------------------------------|--------------------------|-------------------|-----------------------|
| Tomp. Cycle   | <b>x</b> X <sub>5</sub> = <b>x</b> X = <b>x</b> | 3•53<br>6•4983           | 2•34<br>•1.696    | 1.00<br>.040 <b>4</b> |
| Burn-In       | <b>x</b> x = <b>x</b> 2 =                       | 47<br>.4239              | -1.77<br>.4937    | 13<br>.811.8          |
| Initial Noise | ZX2 =                                           | 90.8<br>2322.56          | 42.0<br>104.36    | 372.6<br>5401.80      |
| Load Life     | <b>E</b> X = =                                  | 7.29<br>1 <b>7.4</b> 031 | 83.74<br>426.8008 | 20.99<br>48.5980      |
| F - Ratio     |                                                 | 3.532                    | 22.123            | 88.317                |
| Table Value:  | F <sub>.95</sub> (3, 1                          | 10) = 2.84               |                   |                       |

|               |                           | A                | В                                | С                     |
|---------------|---------------------------|------------------|----------------------------------|-----------------------|
| Temp. Cycle   | <b>z</b> X = <b>z</b> X = | 1.05<br>.0619    | .62<br>.0208                     | .h3<br>.0115          |
| Burn-In       | Σχ =<br>Σχ <sup>2</sup> = | .02<br>.0026     | 1.0<br>.0606                     | .27<br>.0կվ <b>.3</b> |
| Initial Noise | <b>x</b> X <sub>5</sub> = | 22.3<br>55.61    | 8 <b>3.</b> 8<br>359 <b>.</b> 68 | 26.2<br>37.08         |
| Load Life     | ZX <sup>5</sup> =         | 12.87<br>23.2905 | 1288.95<br>180753.և8             | 61.54<br>324.7678     |
| F - Ratio     |                           | 3.199            | 13.397                           | 16.985                |
| Table Value:  | F <sub>.95</sub> (3, 3    | 1<br>25) = 2.99  |                                  |                       |

# 39.2%, 10 X HATED

|               |                           | A                 | В                        | C                        |
|---------------|---------------------------|-------------------|--------------------------|--------------------------|
| Temp. Cycle   | Σ X <sub>5</sub> =<br>Σ   | .52<br>.0169      | 1.88<br>.1624            |                          |
| Burn-In       | <b>∑</b> X3 = <b>∑</b> X  | .50<br>.0552      | 3h<br>.6h16              |                          |
| Initial Noise | <b>z</b> X <sup>2</sup> = | 58.4<br>142.68    | 71.4<br>3413.72          |                          |
| Load Life     | <b>E</b> X? = <b>E</b> X? | 53.82<br>267.9231 | 14 Resistors<br>Unstable | 16 Resistors<br>Unstable |
| F - Ratio     |                           | 16.681            |                          |                          |
| Table Value:  | F <sub>.95</sub> (3, 2)   | 5) = 2.99<br>     |                          |                          |

## SUMMARY 100 OHM

|                                                             |     | Temp. Cycle<br>Load Life                           | Burn-In<br>Load Life                                        | Initial Noise<br>Load Life    |
|-------------------------------------------------------------|-----|----------------------------------------------------|-------------------------------------------------------------|-------------------------------|
| F - Ratio 1 X Rated Group A Group B Group C Table Value:    | F.9 | 1.02<br>506.38<br>2.83<br>5 (1, 60) = 4.00         | 7 <b>.5</b> 5<br><b>59.</b> 69<br>1 <b>.3</b> 5             | 108977.8<br>31.995<br>1084.93 |
| 2½ X Rated<br>Group A<br>Group B<br>Group C                 | F.9 | 14.22<br>6263.33<br>124.25<br>5 (1, 40) = 4.08     | 182.40<br>642.639<br>134.48                                 | 1480.5<br>4.866<br>41.18      |
| 5 X Rated<br>Group A<br>Group B<br>Group C<br>Table Value:  | F.9 | 20.73<br>182751.72<br>1146.24<br>5 (1, 30) = 4.17  | 68.80<br>183759.54<br>125.եփ                                | 92.75<br>24.834<br>15.77      |
| 10 X Rated<br>Group A<br>Group B<br>Group C<br>Table Value: | F.9 | 935.82<br>211.66273.<br>42222.66<br>(1, 25) = 4.24 | 6429 <b>.</b> 44<br><b>5550596.</b> 2<br>124484 <b>.</b> 05 | 2.14<br>1450.8489<br>18.01    |

|                                                            |                     | Temp. Cycle<br>Load Life                         | Burn-In<br>Load Life                           | Initial Noise<br>Load Life    |
|------------------------------------------------------------|---------------------|--------------------------------------------------|------------------------------------------------|-------------------------------|
| F - Ratio 1 X Rated Group A Group B Group C Table Value:   | F <sub>.95</sub> (  | 4.0<br>102.6<br>48.24<br>1,60) = 4.00            | 4.62<br>4.33<br>7.008                          | 1993750.<br>15.47<br>-961841. |
| 2½ X Rated<br>Group A<br>Group B<br>Group C                |                     | 291669.9<br>2872.587<br>30917.4<br>., 40) = 4.08 | 69373.8<br>2217.9<br>4.863                     | 1.5969<br>1.151<br>78540.3    |
| 5 X Rated<br>Group A<br>Group B<br>Group C<br>Table Value: | F <sub>.95</sub> (1 | 2.747<br>1716.5<br>959.34<br>, 30) = 4.17        | 39.96<br>560.62<br>443.88                      | 123.67<br>4.196<br>39.85      |
| 10 X Rated<br>Group A<br>Group B<br>Group C                |                     | Unal                                             | 2805.9<br>ole to Determine<br>ole to Determine | 2.014                         |
| Table Value:                                               | F.95 (1             | , 25) = 4.24                                     |                                                |                               |

resistance change in most cases was not significantly large enough to compare variances. Data comparisons are shown in Tables II, III, IV and V. Significant differences are seen in all cases for each Manufacturing Type with the exception of two cases (i.e. the 100 ohm, 1 X rated power and 39.2K,  $2\frac{1}{2}$  X rated power for Type A).

The various temperature stress data were combined for each power stress condition in this comparison.

# 2.3 Comparison of Each Screen Test with Life Test for Each Manufacturing Type

The variance of data for each screen test performed was compared with the variance of load life data for each Manufacturing

Type and each power stress condition. The various temperature stress conditions were combined to provide adequate sample sizes for comparison. The S.T.O.L. test data again was omitted for reasons given in Paragraph 2.2. The data summary is presented in Tables VI and VII.

### 2.4 Phase III Tests

Screen testing was performed on one-half of the resistor units to be tested in the Phase III Life Tests. The matrix conditions for the Phase III Life Tests were selected as shown in Table VIII.

Matrix I - 125°C @ 1 X Rated Power

Matrix II - 70°C @ 2.5 X Rated Power

Matrix III - 125°C @ 2.5 X Rated Power

Matrix IV - 150°C @ 10 X Rated Power

TABLE VIII

An arbitrary selection of 1% resistance change in the Life
Test is expected to produce no failures in Matrix I, an intermediate number of failures in Matrix II and Matrix III, and
100% failures in Matrix IV. Matrix I is then to be considered
the base condition.

Phase III life tests were initiated and 40 units were damaged due to an accidental voltage overload. These units were replaced from the standby units. Serial numbers of the parts damaged and their replacements are as listed in Table IX.

| Mfg. Type | Damaged Units    | Replacements     |
|-----------|------------------|------------------|
| A         | 030341 to 030380 | 030502 to 030541 |
| В         | 034341 to 034360 | 034501 to 034520 |
| С         | 0363L1 to 036360 | 036521 to 036540 |
|           | TABLE IX         |                  |

### 3.0 ANALYSIS

Application of the methods of analysis of variances as described in Reference (1) of The First Quarterly Progress Report indicates the differences in the Life Test results of "screened" and "unscreened" resistors as was shown in Table I. It is then to be determined if the effects of "screening" are beneficial or detrimental. Also to be determined is which screen test or tests yield data which will closely correlate to the Life Test results; thereby predicting in advance the operating life characteristics of a resistor or lot of resistors.

## 3.1 Effects of Screen Tests

Examination of Table X indicates that approximately 1/2 of the test groups indicate a smaller mean resistance change and, or a smaller deviation for the screened groups. Approximately 25% of the groups tested indicate both a smaller mean resistance change and deviation for the screened groups.

It should be pointed out here that the Life Tests for the screened groups included those units which displayed excessive resistance changes during Screen Testing.

It is felt at this point that removal of the non-conformists after Screen Testing and prior to Life Testing would show a definite superiority in both the mean resistance change and deviation for the screened units over the unscreened units. This is to be examined in closer detail in a future report.

3.2 Correlation of the Various Screen Tests with Life Test

Examination of Tables VI and VII does not indicate strict

correlation for any particular Screen Test and Life Test for

## EFFECTS OF SCREEN TESTS

100 QHM

|                                  | X1           |              | X2 <del>2</del> |              | X5           |              | XLO          |              |
|----------------------------------|--------------|--------------|-----------------|--------------|--------------|--------------|--------------|--------------|
|                                  | Mean         | Dev.         | Mean            | Dev.         | Mean         | Dev.         | Mean         | Dev.         |
| 25°C:<br>Screened<br>Unscreened  | 072<br>064   | .010<br>.022 | 08<br>065       | .029<br>.024 | 017<br>046   | .050<br>.028 | .14<br>.12   | •153<br>•086 |
| 70°C:<br>Screened<br>Unscreened  | 088<br>091   | .030<br>.036 | 227<br>094      | .026<br>.025 | 042<br>.041  | .014<br>.086 | •34<br>•44   | .221<br>.304 |
| 125°C:<br>Screened<br>Unscreened | 023<br>026   | .015<br>.035 | .0011<br>.0113  | .137<br>.064 | .045<br>.085 | .028<br>.027 | 7570<br>5660 | 48.8<br>55.0 |
| 150°C:<br>Screened<br>Unscreened | .268<br>.386 | .607<br>.723 | 1.53<br>1.42    | 2.93<br>2.77 | 7.10<br>4.75 | 7.39<br>1.82 | 3520<br>2450 | 51.7<br>45.6 |

39.2K

|                                         | X           | 1             | X2=           |              | X5           |              | X10          |              |
|-----------------------------------------|-------------|---------------|---------------|--------------|--------------|--------------|--------------|--------------|
| *************************************** | Mean        | Dev.          | Mean          | Dev.         | Mean         | Dev.         | Mean         | Dev.         |
| 25°C:<br>Screened<br>Unscreened         | 037<br>023  | .020<br>.015  | 496<br>270    | .оцо<br>.070 | .297<br>.125 | .614<br>.196 | .157<br>.157 | .057<br>.081 |
| 70°C:<br>Screened<br>Unscreened         | 077<br>-093 | .043<br>.025  | •095<br>-•014 | .125<br>.025 | .655<br>068  | .232<br>.111 |              |              |
| 125°C:<br>Screened<br>Unscreened        | 005<br>037  | .03l4<br>.073 | •331<br>•326  | .290<br>.320 | 10.1         | 1.99<br>1.67 |              |              |
| 150°C:<br>Screened<br>Unscreened        | .182        | .160<br>.206  | 2.33<br>5.00  | 1.06<br>1.65 | 26.2<br>28.1 | <u>3.</u> Ш  | <br>         |              |

all manufacturing types. Examination of additional data collected from the 4000-hr. extended Life Test is expected to provide additional information, especially in the low and medium stress levels. Other work in this area has indicated a direct correlation between the 100-hr. Burn-in Test and extended Life Test.

## 3.3 Recommendations

It is recommended that the Contractor proceed with testing and data analysis as scheduled.